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Abstract:

The mechanism by which neural stem cells develop into neurons, neurogenesis occurs at 10-13
embryonic days. Research performed by Faure et al. (2020) revealed several bifurcation events,
leading to the differentiation of proprioceptor, mechanoreceptor, and nociceptor gene clusters. Here, we
use data from Faure et al. (2020) and employ various clustering methods to compare results. Our
findings include Fxyd7 for proprioception, ltga11 for mechanoreception, Cxcl/16, and Trpv1 for
nociception. In spite of limited preprocessing and computational power, our results suggest that an
ensemble model across multiple clustering methods may be suitable for novel discoveries.

Introduction:

Neurogenesis is the process where neural stem cells develop into neurons. This process is most active
during embryonic or prenatal development stages, as the brain grows (Abdissa et al., 2020). As
neurons are unable to divide, the only way for specialized neurons to develop is through neurogenesis.
Therefore, a handful of different neural stem cell types can develop into different neurons in our bodies.
This happens after 10-13 embryonic days, but ultimately depends on which finalized form it takes
(Postiglione et al., 2014). We understand at a high level how fate splits happen, but much of the
mechanisms underlying the process are still unknown. Faure et al. (2020) look to use RNA-seq analysis
to detail fate split and molecular biasing processes during sensory neurogenesis, to help better
understand the process. In the paper, RNA Velocity vectors are used to uncover the directionality of
genes over embryonic days. This leads to the identification of differentially expressed genes, which can
be traced to various fate split forks. Our study will utilize this data, along with their gene expression
data, to apply various clustering methods. In doing so, we will attempt to identify genes that are
co-expressed, heavily expressed, or expressed at different intensities and compare the results. We will
also compare the clustering techniques and combine all our models as an ensemble model to make our
identifications. The overall objective of our studies is to explore the elementary clustering methods and
to ensure that they were not potentially overlooked, especially in an ensemble modeling environment.

Methods and Results:

We first identify the results by Faure et al. to use as parameters in our methods. The technique used in
the paper is RNA velocity, which produces a time derivative of gene expression. This is a technique for
analyzing embryogenesis processes and allowed them to extract the results in Figure 1 below.

The authors focused on somatic neural cells, which include
involvement in nociception (sensitivity to pain, heat, and cold),
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mechanoreception (muscle and movement related), and
proprioception (sense of balance and spatial positioning). We
also noticed the results show that nociception branches earlier
than the two movement-related categories, which corresponds
with functional expectations. The genes identified by the study
are used in our analysis to help identify clusters and assign
potential categories to our generated clusters. For each
clustering method, we will track the clustering identifications of
the genes from the original study, and label the categories with
the most common cluster label. This will then be our basis for
further prediction, as well as input for the ensemble model.
Tiebreakers for groups will be broken by their respective fate
categories, if applicable.

Figure 1: Results from Faure et al. identifying genes related to nociception,
mechanoreception, and proprioception. In addition, they identified the genes
critical to the fated path of a stem cell.
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Data Preprocessing:

The full dataset we use has around 5700 columns of sample cells in conditions for Cranio, Dorsal Root
Ganglia, and Trunk at 9.5, 10.5, 11.5, and 12.5 embryonic days. We first try to collapse the column data
by trying various methods including sum, min, max, average and random sampling. The averaging
results were the most promising, leading us to group all of the samples into a final column count of 8.
We also mitigate data loss, which would have happened with min or max methods. We also conduct
data preprocessing on our expression counts, attempting normalization, z-scores, log transformations,
and random sampling. The final preprocessing step we concluded with is log transformations, providing
us with the most consistent results.

K-Means Algorithm:

The first algorithm we attempted was the k-means clustering method (Macqueen, n.d.). This is a simple
algorithm that helped with initial data visualization and data processing and laid the groundwork for the
other models. We experimented with various pre-processing techniques, as well as dimension
reduction procedures here. For experimentation, we conducted K-Means with the original data as is, in
addition to all the preprocessing procedures highlighted above. The elbow method was used to tune the
model, identifying a k cluster hyperparameter value of 11. The resulting clusters identified all three
categorical functions, nociception, mechanoreception, and proprioception, as their own individual
clusters. UMAP dimension reduction was used to help visualize the data and is presented in Figure 2
below, along with raw clustering values and random result samples.
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Figure 2: (Left) Results from K-Means clustering with UMAP dimension reduction graphing the first and second components.
(Right) Clustering results for each of the reference genes and fate genes from the original study.

Leiden Algorithm:

The Leiden algorithm is a community-based clustering algorithm that is a step up from the Louvain
algorithm, guaranteeing well-connected communities (Traag et al., 2019). The approach involves
creating a graph where each node is a gene. Edges are formed if two genes have a similarity greater
than 0.85. Each node is then visited and placed in a more suitable cluster. All the while, clusters can be
broken up or combined to minimize a Euclidean distance function. Our results here were bottlenecked
by graph creation runtime, limiting us to tune for a few tries only. Therefore, potentially weaker results
were obtained, but are presented in Figure 3 below with random result samples.
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Figure 3: Clustering results for each of the reference genes and fate genes from the original study.

o,
t7,

5]

0, 3, 7,

Agglomerative Hierarchical Algorithm:

The agglomerative hierarchical clustering method is also a simple, but powerful method that can greatly
assist with visualizing the data clusters in the form of dendrograms or heatmaps. Here, a bottom-up
approach is used, pairing similar genes together until all genes are grouped. This method is slightly
weaker for high-dimensional data, but using z-score normalization will provide a good visualization of
our data. The clustering and heatmap results are presented in Figure 4 below with random result
samples. The clustering was most successful for the nociception cluster, providing some indication that
the method works for non-motor-related functions, potentially due to some unexpected variable
influencing motor clusters. Therefore, only the heatmap for nociception is presented.
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Figure 4: (Left) Results from agglomerative hierarchical clustering with z-score normalization shown as a heatmap. Values on
the left are the dendrogram clusters, values below are cell conditions, and values on the right are nociception genes from the
original paper. (Right) Clustering results for each of the reference genes and fate genes from the original study.

Weighted Gene Correlation Network Analysis:

Weighted gene correlation network analysis is a popular data mining method that combines clustering
methods like hierarchical clustering with graph representations of gene expressions (Rezaie et al.,
2022). This method had high success in finding genes associated with specific functions. For example,
it was used to identify the Wnt5a gene which is highly expressed for mammalian flight membrane cells
(Feigin et al., 2023). The method used in our analysis is the Python implementation, which includes a
pipeline that conducts preprocessing to remove lowly expressed genes along with outliers. A correlation
matrix is then created, and hierarchical clustering is performed with dynamic tree pruning. The end
result can be used to generate eigengenes, which are profiles representing a cluster of genes. These
are hypothetical genes that can help compare across clusters and provide a point for further analysis.
In Figure 5 below, we present our eigengene clustering along with results and random result samples.
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Figure 5: (Top) Eigengene dendrogram clustering of all the cluster groups identified from PyWGCNA. (Bottom) Clustering
results for each of the reference genes and fate genes from the original study.

DBScan Algorithm:

Another clustering method we explored was DBScan (Ram et al., 2010). Since DBScan groups regions
by density; it can capture patterns in arbitrarily shaped data, potentially making it a good choice for our
data. DBScan begins by classifying each of the data points into 3 possible types: core, border, or noise
points. Once all the points have been categorized, each set of core and its border points are considered
its own cluster. As seen in Figure 6 below, this method generated over 70 clusters, but it also grouped
four of the six proprioceptor genes into the same cluster. The proprioceptor cluster (number 23) also
contained both genes associated with Fate1, which are involved in the proprioceptor branching (Faure

et al., 2020). Other clusters generated with DBScan were more ambiguous and unclear.
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Figure 6: (Left) Clustering results from DBScan visualized on our processed data reduced to 2 dimensions using t-distributed
stochastic neighbor embedding (t-SNE). Different colors represent the different clusters. (Right) Clustering results for each of
the reference genes and fate genes from the original study.
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Hierarchical DBScan Algorithm (HDBScan):

As an extension to regular DBScan, HDBScan looks to improve performance for non-uniform density
clusters (Campello et al., 2013). HDBScan achieves this by using core distances to construct cluster
representations which can be used to determine clusterings that are stable across varying intra-cluster
densities. Figure 7 and 1S below highlights our HDBScan results; only half of the proprioceptor genes
are clustered together. Using a randomized search for hyperparameter tuning yielded fewer clusters,
but the original reference genes from the different cell types were indifferentiable.
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Figure 7: Clustering results for each of the reference genes and fate genes from the original study.

Ensemble Algorithm:

The final model was an ensemble model. Using combinations of the previous models, cell-type clusters
were determined to be the cluster that contained the most reference genes. Common genes across
each cell type cluster were identified for further investigation. From the proprioceptor gene cluster, all 6
models converged on a single gene: Fxyd7. From the mechanoreceptor cluster, 5 of the 6 models
identified /ltga71. And from the nociceptor cluster, 4 of the 6 models identified Cxc/16 and Trpv1. The
flexibility of the ensemble model also allows us to individually evaluate clustering model performance
and either include more models, differently tuned models, or exclude models.
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Figure 8: Our graphical ensemble model representation. Solid lines indicate that the same data was added to each of the
models. Dotted lines indicate that the output of the individual models may be included in the ensemble model.
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Discussion:

Fxyd7 is the single gene that all of our models agreed on from their designated proprioceptor clusters.
Though this gene has no direct link to proprioceptors, previous work has indicated that Fxyd7 encodes
a protein that is involved in Na, and K-ATPase regulation and may be crucial for neuronal excitability
(Béguin et al., 2002). The predictive functions led us to investigate if Fxyd7 could be involved in a
developmental pathway; however, searching through KEGG yielded no hits.

Itga11 was the gene from our mechanoreceptor clusters that most of our models agreed on. It has been
shown that this gene is involved with intracellular hypertrophic signaling and collagen binding in mice
(Romaine et al., 2018; Schulz et al., 2015). Further analysis into the pathways for ltga11 also produced
results: ECM-receptor interaction, Focal adhesion, Dilated cardiomyopathy, etc. Most of which relate to
growth-signaling or heart muscle disease. This makes sense in the context of mechanoreceptor
development and is a potentially novel link since this gene is unreferenced in the original research
paper.

From the nociceptor clusters, our models identified Cxc/16 and Trpv1. Cxcl16 has been found to be
involved in white blood cell development, and chemotaxis (Matloubian et al., 2000). And its pathways
also include chemokine and cytokine activity, both of which make sense as nociceptor-related genes.
Trpv1 has long been known to be a heat and pain sensor (Kim et al., 2008). Unsurprisingly, Trpv1’s
pathways also involve inflammation and pain sensitivity.

The results we produced were quite different from the original paper. We believe the largest reason for
this mismatch to be the difference in preprocessing. Faure et al. performed extensive preprocessing on
their data which included but was not limited to variance adjustment, KNN, UMAP, PCA, Leiden
clustering, batch correction, and scaling (Faure et al., 2020). In contrast, our preprocessing steps
consisted of averaging across cell samples, scaling, log transformation, and dimension reduction
through UMAP or t-SNE (Xiang et al., 2021).

Another consideration for our results was our lack of computational power. The original dataset
contained over 5000 cell samples and 24,000 genes, which necessitated the need to compress the
data by averaging across sample types. Even with this reduction, hyperparameter tuning, and certain
algorithms took time beyond what could be reasonably dedicated for this project (Leiden took over 30
hours to run).

Despite our limitations, however, our gene findings still do make sense, ltga11, Cxcl16, and Trpv1 in
particular. This suggests that ensemble models across various methods can be useful for novel
discoveries in sc-RNAseq data, even in circumstances where preprocessing and computational power
are limited.

Code and Data Availability:

Code availability can be found in the GitHub repository: https://github.com/Harin329/SNCluster
Data availability can be found from the original authors:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE 150150
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Supplementary Information/Figures:
Selection of a random gene associated with each of the three function categories and the associated gene function obtained

from NCBI (National Center for Biotechnol

ogy Information).

Table 1S: K-Means Gene Feasibility Check

Nociception

Mechanoreception

Proprioception

Bmpr2

Nhej1

Pgap1

Involved in endochondral bone
formation and embryogenesis.

Predicted to be part of the DNA
ligase IV complex and
nonhomologous end-joining
complex.

Acts within embryonic pattern
specification; regionalization;
and sensory perception of
sound.

Table 2S: Leiden Gene Feasibility Check

Nociception

Mechanoreception

Proprioception

Dpp10

Erbb4

Bai3

Part of voltage-gated potassium
channel complex.

Involved in nervous system
development.

Involved in motor learning and
neuron remodeling.

Table 3S: Agglomerative Hierarchical Gene Feasibility Check

Nociception

Mechanoreception

Proprioception

Gpr4d5

Bcel2

Mrps9

Predicted to be an integral
component of the membrane.

Role in neuron cell survival and
autophagy.

Is expressed in several
structures, including the brain.

Table 4S: Weighted Gene Correlat

ion Network Analysis Gene Feasib

ility Check

Nociception

Mechanoreception

Proprioception

Syt

Atxn1

Padi2

Involved in the regulation of
calcium ion-dependent
exocytosis.

Involved in brain development;
learning or memory; and social
behavior.

Used in estrogen receptor
binding activity and protein
homodimerization activity.
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Figure 1S: Condensed dendrogram to represent clusters. Vertical lines show the persistence of the clusters across core
distances.



